3.4.95 \(\int \cot (x) (a+b \tan ^4(x))^{3/2} \, dx\) [395]

3.4.95.1 Optimal result
3.4.95.2 Mathematica [A] (verified)
3.4.95.3 Rubi [A] (verified)
3.4.95.4 Maple [F]
3.4.95.5 Fricas [A] (verification not implemented)
3.4.95.6 Sympy [F]
3.4.95.7 Maxima [F]
3.4.95.8 Giac [F(-2)]
3.4.95.9 Mupad [F(-1)]

3.4.95.1 Optimal result

Integrand size = 15, antiderivative size = 155 \[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\frac {1}{4} \sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a+b \tan ^4(x)}}\right )+\frac {1}{2} (a+b)^{3/2} \text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )-\frac {1}{2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )+\frac {1}{2} a \sqrt {a+b \tan ^4(x)}-\frac {1}{4} \left (2 (a+b)-b \tan ^2(x)\right ) \sqrt {a+b \tan ^4(x)} \]

output
-1/2*a^(3/2)*arctanh((a+b*tan(x)^4)^(1/2)/a^(1/2))+1/2*(a+b)^(3/2)*arctanh 
((a-b*tan(x)^2)/(a+b)^(1/2)/(a+b*tan(x)^4)^(1/2))+1/4*(3*a+2*b)*arctanh(b^ 
(1/2)*tan(x)^2/(a+b*tan(x)^4)^(1/2))*b^(1/2)+1/2*a*(a+b*tan(x)^4)^(1/2)-1/ 
4*(a+b*tan(x)^4)^(1/2)*(2*a+2*b-b*tan(x)^2)
 
3.4.95.2 Mathematica [A] (verified)

Time = 3.25 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.23 \[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\frac {1}{4} \left (2 \sqrt {b} (a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a+b \tan ^4(x)}}\right )+2 (a+b)^{3/2} \text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )-2 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )-2 b \sqrt {a+b \tan ^4(x)}+b \tan ^2(x) \sqrt {a+b \tan ^4(x)}+\frac {\sqrt {a} \sqrt {b} \text {arcsinh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a}}\right ) \sqrt {a+b \tan ^4(x)}}{\sqrt {1+\frac {b \tan ^4(x)}{a}}}\right ) \]

input
Integrate[Cot[x]*(a + b*Tan[x]^4)^(3/2),x]
 
output
(2*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*Tan[x]^2)/Sqrt[a + b*Tan[x]^4]] + 2*(a 
 + b)^(3/2)*ArcTanh[(a - b*Tan[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tan[x]^4])] - 
 2*a^(3/2)*ArcTanh[Sqrt[a + b*Tan[x]^4]/Sqrt[a]] - 2*b*Sqrt[a + b*Tan[x]^4 
] + b*Tan[x]^2*Sqrt[a + b*Tan[x]^4] + (Sqrt[a]*Sqrt[b]*ArcSinh[(Sqrt[b]*Ta 
n[x]^2)/Sqrt[a]]*Sqrt[a + b*Tan[x]^4])/Sqrt[1 + (b*Tan[x]^4)/a])/4
 
3.4.95.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.03, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {3042, 4153, 1579, 606, 243, 60, 73, 221, 682, 27, 719, 224, 219, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \tan (x)^4\right )^{3/2}}{\tan (x)}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \int \frac {\cot (x) \left (a+b \tan ^4(x)\right )^{3/2}}{\tan ^2(x)+1}d\tan (x)\)

\(\Big \downarrow \) 1579

\(\displaystyle \frac {1}{2} \int \frac {\cot (x) \left (b \tan ^4(x)+a\right )^{3/2}}{\tan ^2(x)+1}d\tan ^2(x)\)

\(\Big \downarrow \) 606

\(\displaystyle \frac {1}{2} \left (a \int \cot (x) \sqrt {b \tan ^4(x)+a}d\tan ^2(x)-\int \frac {\left (a-b \tan ^2(x)\right ) \sqrt {b \tan ^4(x)+a}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} a \int \cot (x) \sqrt {b \tan ^4(x)+a}d\tan ^4(x)-\int \frac {\left (a-b \tan ^2(x)\right ) \sqrt {b \tan ^4(x)+a}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} a \left (a \int \frac {\cot (x)}{\sqrt {b \tan ^4(x)+a}}d\tan ^4(x)+2 \sqrt {a+b \tan ^4(x)}\right )-\int \frac {\left (a-b \tan ^2(x)\right ) \sqrt {b \tan ^4(x)+a}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} a \left (\frac {2 a \int \frac {1}{\frac {\sqrt {b \tan ^4(x)+a}}{b}-\frac {a}{b}}d\sqrt {b \tan ^4(x)+a}}{b}+2 \sqrt {a+b \tan ^4(x)}\right )-\int \frac {\left (a-b \tan ^2(x)\right ) \sqrt {b \tan ^4(x)+a}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\int \frac {\left (a-b \tan ^2(x)\right ) \sqrt {b \tan ^4(x)+a}}{\tan ^2(x)+1}d\tan ^2(x)\right )\)

\(\Big \downarrow \) 682

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {b \left (a (2 a+b)-b (3 a+2 b) \tan ^2(x)\right )}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)}{2 b}+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (-\frac {1}{2} \int \frac {a (2 a+b)-b (3 a+2 b) \tan ^2(x)}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (b (3 a+2 b) \int \frac {1}{\sqrt {b \tan ^4(x)+a}}d\tan ^2(x)-2 (a+b)^2 \int \frac {1}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)\right )+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (b (3 a+2 b) \int \frac {1}{1-b \tan ^4(x)}d\frac {\tan ^2(x)}{\sqrt {b \tan ^4(x)+a}}-2 (a+b)^2 \int \frac {1}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)\right )+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a+b \tan ^4(x)}}\right )-2 (a+b)^2 \int \frac {1}{\left (\tan ^2(x)+1\right ) \sqrt {b \tan ^4(x)+a}}d\tan ^2(x)\right )+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (2 (a+b)^2 \int \frac {1}{-\tan ^4(x)+a+b}d\frac {a-b \tan ^2(x)}{\sqrt {b \tan ^4(x)+a}}+\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a+b \tan ^4(x)}}\right )\right )+\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )-\frac {1}{2} \sqrt {a+b \tan ^4(x)} \left (2 (a+b)-b \tan ^2(x)\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} a \left (2 \sqrt {a+b \tan ^4(x)}-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^4(x)}}{\sqrt {a}}\right )\right )+\frac {1}{2} \left (2 (a+b)^{3/2} \text {arctanh}\left (\frac {a-b \tan ^2(x)}{\sqrt {a+b} \sqrt {a+b \tan ^4(x)}}\right )+\sqrt {b} (3 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tan ^2(x)}{\sqrt {a+b \tan ^4(x)}}\right )\right )-\frac {1}{2} \left (2 (a+b)-b \tan ^2(x)\right ) \sqrt {a+b \tan ^4(x)}\right )\)

input
Int[Cot[x]*(a + b*Tan[x]^4)^(3/2),x]
 
output
((Sqrt[b]*(3*a + 2*b)*ArcTanh[(Sqrt[b]*Tan[x]^2)/Sqrt[a + b*Tan[x]^4]] + 2 
*(a + b)^(3/2)*ArcTanh[(a - b*Tan[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tan[x]^4]) 
])/2 - ((2*(a + b) - b*Tan[x]^2)*Sqrt[a + b*Tan[x]^4])/2 + (a*(-2*Sqrt[a]* 
ArcTanh[Sqrt[a + b*Tan[x]^4]/Sqrt[a]] + 2*Sqrt[a + b*Tan[x]^4]))/2)/2
 

3.4.95.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 606
Int[(((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] : 
> Simp[a/c   Int[(c + d*x)^(n + 1)*((a + b*x^2)^(p - 1)/x), x], x] - Simp[1 
/c   Int[(c + d*x)^n*(a*d - b*c*x)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d}, x] && GtQ[p, 0] && ILtQ[n, 0]
 

rule 682
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p 
+ 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p 
+ 2))), x] + Simp[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)))   Int[(d + e*x) 
^m*(a + c*x^2)^(p - 1)*Simp[f*a*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f* 
d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))*x, x], x 
], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && GtQ[p, 0] && (IntegerQ[p] ||  ! 
RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1579
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], 
 x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.4.95.4 Maple [F]

\[\int \cot \left (x \right ) \left (a +b \tan \left (x \right )^{4}\right )^{\frac {3}{2}}d x\]

input
int(cot(x)*(a+b*tan(x)^4)^(3/2),x)
 
output
int(cot(x)*(a+b*tan(x)^4)^(3/2),x)
 
3.4.95.5 Fricas [A] (verification not implemented)

Time = 21.20 (sec) , antiderivative size = 1269, normalized size of antiderivative = 8.19 \[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(cot(x)*(a+b*tan(x)^4)^(3/2),x, algorithm="fricas")
 
output
[1/8*(3*a + 2*b)*sqrt(b)*log(2*b*tan(x)^4 + 2*sqrt(b*tan(x)^4 + a)*sqrt(b) 
*tan(x)^2 + a) + 1/4*(a + b)^(3/2)*log(((a*b + 2*b^2)*tan(x)^4 - 2*a*b*tan 
(x)^2 - 2*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 - a)*sqrt(a + b) + 2*a^2 + a*b) 
/(tan(x)^4 + 2*tan(x)^2 + 1)) + 1/4*a^(3/2)*log((b*tan(x)^4 - 2*sqrt(b*tan 
(x)^4 + a)*sqrt(a) + 2*a)/tan(x)^4) + 1/4*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 
 - 2*b), -1/4*(3*a + 2*b)*sqrt(-b)*arctan(sqrt(b*tan(x)^4 + a)*sqrt(-b)/(b 
*tan(x)^2)) + 1/4*(a + b)^(3/2)*log(((a*b + 2*b^2)*tan(x)^4 - 2*a*b*tan(x) 
^2 - 2*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 - a)*sqrt(a + b) + 2*a^2 + a*b)/(t 
an(x)^4 + 2*tan(x)^2 + 1)) + 1/4*a^(3/2)*log((b*tan(x)^4 - 2*sqrt(b*tan(x) 
^4 + a)*sqrt(a) + 2*a)/tan(x)^4) + 1/4*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 - 
2*b), 1/2*sqrt(-a)*a*arctan(sqrt(b*tan(x)^4 + a)*sqrt(-a)/a) + 1/8*(3*a + 
2*b)*sqrt(b)*log(2*b*tan(x)^4 + 2*sqrt(b*tan(x)^4 + a)*sqrt(b)*tan(x)^2 + 
a) + 1/4*(a + b)^(3/2)*log(((a*b + 2*b^2)*tan(x)^4 - 2*a*b*tan(x)^2 - 2*sq 
rt(b*tan(x)^4 + a)*(b*tan(x)^2 - a)*sqrt(a + b) + 2*a^2 + a*b)/(tan(x)^4 + 
 2*tan(x)^2 + 1)) + 1/4*sqrt(b*tan(x)^4 + a)*(b*tan(x)^2 - 2*b), 1/2*sqrt( 
-a)*a*arctan(sqrt(b*tan(x)^4 + a)*sqrt(-a)/a) - 1/4*(3*a + 2*b)*sqrt(-b)*a 
rctan(sqrt(b*tan(x)^4 + a)*sqrt(-b)/(b*tan(x)^2)) + 1/4*(a + b)^(3/2)*log( 
((a*b + 2*b^2)*tan(x)^4 - 2*a*b*tan(x)^2 - 2*sqrt(b*tan(x)^4 + a)*(b*tan(x 
)^2 - a)*sqrt(a + b) + 2*a^2 + a*b)/(tan(x)^4 + 2*tan(x)^2 + 1)) + 1/4*sqr 
t(b*tan(x)^4 + a)*(b*tan(x)^2 - 2*b), 1/2*(a + b)*sqrt(-a - b)*arctan(s...
 
3.4.95.6 Sympy [F]

\[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{4}{\left (x \right )}\right )^{\frac {3}{2}} \cot {\left (x \right )}\, dx \]

input
integrate(cot(x)*(a+b*tan(x)**4)**(3/2),x)
 
output
Integral((a + b*tan(x)**4)**(3/2)*cot(x), x)
 
3.4.95.7 Maxima [F]

\[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (x\right )^{4} + a\right )}^{\frac {3}{2}} \cot \left (x\right ) \,d x } \]

input
integrate(cot(x)*(a+b*tan(x)^4)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tan(x)^4 + a)^(3/2)*cot(x), x)
 
3.4.95.8 Giac [F(-2)]

Exception generated. \[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(x)*(a+b*tan(x)^4)^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.4.95.9 Mupad [F(-1)]

Timed out. \[ \int \cot (x) \left (a+b \tan ^4(x)\right )^{3/2} \, dx=\int \mathrm {cot}\left (x\right )\,{\left (b\,{\mathrm {tan}\left (x\right )}^4+a\right )}^{3/2} \,d x \]

input
int(cot(x)*(a + b*tan(x)^4)^(3/2),x)
 
output
int(cot(x)*(a + b*tan(x)^4)^(3/2), x)